
4. Thermodynamics of Polymer Blends 
 

Polymeric materials find growing applications in various fields of everyday life because they 

offer a wide range of application relevant properties. Blending of polymers is a technological 

way for providing materials with full set of desired specific properties at the lowest price, e.g. 

a combination of strength and toughness, strength and solvent resistance,  etc. Blending also 

benefits the manufacturer by offering improved processability, product uniformity, quick 

formulation changes, plant flexibility and high productivity.[56]  

If two polymers are mixed, the most frequent result is a system that exhibits a complete phase 

separation due to the repulsive interaction between the components (i.e. the chemical 

incompatibility between the polymers).[57, 58] Complete miscibility in a mixture of two 

polymers requires that the following condition is fulfilled: 

 

∆Gm = ∆Hm – T∆Sm < 0                                               (4.1) 

 

where ∆Gm, ∆Hm, and ∆Sm are the Gibb’s free energy, the enthalpy and entropy of mixing at 

temperature T, respectively. 

For a stable one-phase system, criteria for phase stability of binary mixtures of composition φ 

at fixed temperature T and pressure p are:  

 

0G,0G
T,p

2
m

2
m >⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

φ∂

∆∂
<∆                               (4.2) 

 

Miscible polymer blend is a polymer blend which is homogeneous down to the molecular 

level and associated with the negative value of the free energy of mixing and the domain size 

is comparable to the dimensions of the macromolecular statistical segment. The value of 

T∆Sm is always positive since there is an increase in the entropy on mixing. Therefore, the 

sign of ∆Gm always depends on the value of the enthalpy of mixing ∆Hm. The polymer pairs 

mix to form a single phase only if the entropic contribution to free energy exceeds the 

enthalpic contribution, i.e.,  

 

∆Hm < T∆Sm                                                                (4.3) 
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For most polymer blends the miscibility increases with increasing the pressure. The effect 

depends on the magnitude of the heat of mixing ∆Hm. For ∆Hm < 0 the miscibility is enhanced 

by compression, whereas for those with ∆Hm > 0 it is reduced. 

A schematic phase diagram is shown in Figure 4.1. There are three regions of different degree 

of miscibility: 1. The single-phase miscible region between the two binodals, 2. The four 

fragmented metastable regions between binodals and spinodals, and 3. The two-phase 

separated regions of immiscibility, bordered by the spinodals. The diagram also shows two 

critical solution temperatures, the lower, LCST (at higher temperature), and the upper, UCST 

(at lower temperature). The phase diagram with two critical points is a rule for mixtures of 

low molar mass components, whereas the polymer blends usually show either LCST (most) or 

UCST. 

 

 

Figure 4.1 Phase diagram for liquid mixtures with the upper and the lower critical solution 

temperature, UCST and LCST, respectively.[59]

 

The binodals (Figure 4.1) separate miscible (one-phase) and metastable region, the spinodals 

separate metastable and two-phase region. The thermodynamic conditions for phase 

separations are given by[59]: 
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critical point:    0GG

T,p
3

m
3

T,p
2

m
2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

φ∂

∆∂
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

φ∂

∆∂                           (4.5) 

 

The phase separation takes place when a single-phase system suffers a change of either 

composition, temperature or pressure that forces it to enter either the metastable or the 

spinodal region. When the system enters from single-phase region into the metastable region, 

the phase separation occurs by the mechanism resembling crystallization – slow nucleation 

followed by growth of the phase separated domains.[59] By contrast, when the system is forced 

to jump from a single-phase into the spinodal region of immiscibility the phases separate 

spontaneously by a mechanism called spinodal decomposition. 

 

Starting point for most of the theoretical interpretations of polymer solutions and blends is the 

Flory-Huggins lattice theory. It is basically an extension of the concept of regular solutions on 

polymer solutions. Thus the model restrictions are no change of volume during mixing 

(incompressible model), the entropy of mixing is entirely given by the number of 

rearrangements during mixing (combinatorial entropy) and the enthalpy of mixing is caused 

by interactions of different segments after the dissolution of interactions of the same type of 

segments. It is a mean-field model, i.e. only average interactions are taken into consideration. 

The main problem was to find an expression for the entropy of mixing because it was found 

experimentally that polymer solutions show significant deviations from values expected for 

ideal solutions. Assuming a rigid cubic lattice model, this problem was independently solved 

for polymer solutions by Huggins and Flory. 

The lattice theory for the enthalpy of mixing in polymer solutions, developed by Flory and 

Huggins, can be formally applied to polymer mixtures, which provides a rough estimation of 

the miscibility of the polymers.[60, 61] Assuming random mixing of two polymers and ∆Vm = 0 

yields the well-known expression for the combinatorial entropy of mixing ∆Sm of the Flory-

Huggins theory:  
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where φi is the volume fraction of the component i and ri is the number of polymer segments, 

R is the gas constant. It can be seen that the entropy of mixing decreases with increasing 

molar mass (ri is proportional to the degree of polymerization) and vanishes for infinite molar 
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masses. Applying the concept of regular solutions and assuming all pair interactions in the 

framework of a mean-field theory yields for the enthalpy of mixing ∆Hm: 

 

21m RTH φχφ∆ =                                                          (4.7) 

 

For binary systems the Flory-Huggins equation can be expressed in the following form [62, 63]: 
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where χ is the so called Flory-Huggins binary interaction parameter. R is the universal gas 

constant, and T is the absolute temperature. The first two terms of the right hand side in 

Equation 4.8 are related to the entropy of mixing and the third term is originally assigned to 

the enthalpy of mixing.  
 
For polymers having infinite molar mass (i.e. ri is infinite) the entropic contribution is very 

small and the miscibility or immiscibility of the system mainly depends on the value of the 

enthalpy of mixing (Equation 4.7). Miscibility can  only be achieved when  χ is negative. 

The term ‘parameter’ is widely used to describe χ but it is definitively better characterized by 

the term ‘function’, because χ depends on such quantities as temperature, concentration, 

pressure, molar mass, molar mass distribution and even on model parameters as the 

coordination number of the lattice and segment length.[56]  

 

For polymers, the miscibility can only be achieved when χ < χcr. The χ parameter at the 

critical point χcr can be obtained from the definition of the critical point (Figure 4.1) and 

Equation 4.8 as follows: 
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where ri is the number of polymer segments (which is proportional to the degree of 

polymerization). 
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It should be mentioned that the Equations 4.8 and 4.9 are based on the assumption that χ is 

not a function of composition, χcr is only a function of the molar masses. 

 

PE/EVA blends under investigations in this work are blends of a homopolymer and a 

copolymer (PE/ExVA1-x). The effective interaction parameter χ between the homopolymer 

and the copolymer is given by:  

 

χ = xχEE + (1-x) χEV – x(1-x) χEV                                (4.10) 

 

where χij are the segmental interaction parameters and x is the copolymer composition in 

mol.-%. χEE = 0 in the case of PE/EVA blends and therefore the effective interaction 

parameter χ is equal to: 

 

χ = (1-x) χEV – x(1-x) χEV                                           (4.11) 

 

And as already mentioned, the polymers are miscible when χ < χcr. 
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